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T. Héger‡

Departament of Computer Science
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Abstract

Let q be a prime power and g ∈ {6, 8, 12}. In this paper we obtain (q, g)-

graphs on 2qg/2−3(q2−1) vertices for g = 6, 8, 12 as subgraphs of known (q+1, g)-

cages. We also obtain (k, 6)-graphs on 2(kq − 1) vertices, and (k, 8)-graphs on

2k(q2−1) vertices and (k, 12)-graphs on 2kq2(q2−1), where k is a positive integer
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such that q ≥ k ≥ 3. Some of these graphs have the smallest number of vertices

known so far among the regular graphs with girth g = 6, 8, 12.

Key words. Cage, girth.

1 Introduction

Throughout this paper, only undirected simple graphs without loops or multiple edges

are considered. Unless otherwise stated, we follow the book by Godsil and Royle [14]

for terminology and definitions.

Let G = (V (G), E(G)) be a graph with vertex set V = V (G) and edge set E =

E(G). The girth of a graph G is the number g = g(G) of edges in a smallest cycle.

The degree of a vertex v ∈ V is the number of vertices adjacent to v. A graph is

called regular if all the vertices have the same degree. A cage is a k-regular graph

with girth g having the smallest possible number of vertices. Simply counting the

numbers of vertices in the distance partition with respect to a vertex yields a lower

bound n0(k, g) on the number of vertices n(k, g) in a cage, with the precise form of the

bound depending on whether g is even or odd.

n0(k, g) =

{

1 + k + k(k − 1) + . . . + k(k − 1)(g−3)/2 if g is odd;

2(1 + (k − 1) + . . . + (k − 1)g/2−1) if g is even.
(1)

A (k, g)-cage with even girth g and n0(k, g) vertices is said to be a generalized

polygon graph. Generalized polygon graphs exists if and only if g ∈ {4, 6, 8, 12} [6].

When g = 6, the existence of a graph with n0(k, 6) = 2(k2 − k + 1) vertices called

generalized triangle, is equivalent to the existence of a projective plane of order k − 1,

that is, a symmetric (n0/2, k, 1)-design. It is known that these designs exist whenever

k − 1 is a prime power, but the existence question for many other values remains

unsettled. Generalized quadrangles when g = 8, and generalized hexagons when g = 12

are also known to exist for all prime power values of k − 1, see [4, 6, 14].

Biggs [6] call excess of a k-regular graph G the difference |V (G)| − n0(k, g). The

question of the construction of graphs with small excess is a difficult one. Cages have

been studied intensely since they were introduced by Tutte [22] in 1947. Erdős and

Sachs [10] proved the existence of a graph for any value of the regularity k and the

girth g, thus most of work carried out has been focused on constructing a smallest one

[1, 2, 5, 8, 9, 11, 12, 16, 18, 19, 20, 23, 24]. Biggs is the author of an impressive report
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on distinct methods for constructing cubic cages [7]. More details about constructions

on cages can be found in the survey by Wong [24] or in the survey by Holton and

Sheehan [15].

It is conjectured that cages with even girth are bipartite [21, 24]. In [3], (k, 6)-

bipartite graphs of order 2(kq − 1) are obtained giving the incidence matrices where

k ≥ 3 is an integer and q is a prime power such that q ≥ k. When q is a square prime

power it has been proved [13] that n(k, 6) ≤ 2(kq− (q− k)(
√

q + 1)−√
q) for all k ≤ q

using geometrical techniques. This last result improves the above one when the smallest

prime power q ≥ k happens to be a square. Otherwise even if a square prime power is

very close to q, say q + 2, we obtain larger graphs. For example, for k = 21 a (21, 6)-

regular graph on 2(23·21−1) = 964 vertices has been constructed in [3] giving explicitly

its incidence matrix, while the result in [13] gives n(21, 6) ≤ 2(525−4(5+1)−5) = 992.

In this paper we obtain first (q, g)-graphs on 2qg/2−3(q2 − 1) vertices as subgraphs

of known (q +1, g)-cages for g = 6, 8, 12. Second, using similar ideas, we exhibit (k, 6)-

bipartite graphs on 2(kq−1) vertices and (k, 8)-bipartite graphs on 2(q2k−k) vertices.

Finally, we also obtain (q − 1, 12)-bipartite graphs on 2(q − 1)2(q3 + q2) vertices.

2 Results

To state our results we introduce some notation based on a standard decomposition

for a graph G of even girth g. Choose an edge xy of G and define for 0 ≤ i ≤ g/2 − 1

the following sets,

Xi = {u ∈ V (G) : ∂(u, x) = i, ∂(u, y) = i + 1},
Yi = {v ∈ V (G) : ∂(v, y) = i, ∂(v, x) = i + 1}. (2)

The fact that the girth of G is g implies that the sets Xi, Yi (0 ≤ i ≤ g/2 − 1) are

pairwise disjoint.

In the next theorem we find (q, g)-graphs for q a prime power and g = 6, 8, 12 as a

subgraphs of some generalized polygons graphs. This construction extends to g = 8, 12

the results contained in [3] for (q, 6)-cages. Also this construction allows us to improve

the upper bound n(q, g) ≤ 2(q
g−2

2 ) shown in [2] for q a prime power and g = 6, 8, 12.

Theorem 2.1 Let q be a prime power and g = 6, 8, 12. Then any (q + 1, g)-cage

contains as a subgraph a (q, g)-graph on 2qg/2−3(q2 − 1) vertices. Hence

n(q, g) ≤ 2qg/2−3(q2 − 1).

3



Proof. Let H be a generalized polygon graph of degree q + 1 and girth g = 6, 8, 12.

Choose an edge xy of H and consider the sets introduced in (2), which clearly partition

V (H). Let denote X1 = {x1, x2, . . . , xq} and Y1 = {y1, y2, . . . , yq}. Let us partition Xi

and Yi, i ∈ {1, . . . , g/2 − 1} into the following sets:

Di−1(xj) = {w ∈ Xi : ∂(w, xj) = i − 1}, j = 1, 2, . . . , q.

Di−1(yj) = {w ∈ Yi : ∂(w, yj) = i − 1}, j = 1, 2, . . . , q.

Let us show the following claim.

Claim 1 Each one of the induced subgraphs H[Dg/2−2(xi) ∪ Dg/2−2(yj)], i, j ∈
{1, 2, . . . , q} of H define a perfect matching.

Suppose that there is u ∈ Dg/2−2(xi) such that |N(u) ∩ Dg/2−2(yj)| ≥ 2 for some

j ∈ {1, 2, . . . , q}. Then uw1, uw2 ∈ E(H) for w1, w2 ∈ Dg/2−2(yj) yielding that the

shortest (yj, w1)-path of length g/2 − 2, the shortest (yj, w2)-path of length g/2 − 2,

and the edges uw1, uw2 create a cycle of length less than g which is a contradiction.

Therefore |N(u) ∩ Dg/2−2(yj)| ≤ 1 for all u ∈ Dg/2−2(xi) and j = 1, 2, . . . , q. As every

vertex u ∈ Dg/2−2(xi) has exactly one neighbor in Xg/2−2 and the other q neighbors of

u must be in Yg/2−1 because g ≥ 6, then |N(u) ∩ Dg/2−2(yj)| = 1. Analogously every

vertex v ∈ Dg/2−2(yj) has |N(v) ∩ Dg/2−2(xj)| = 1, hence the claim is valid.

Let G be the graph obtained from H by deleting Xi and Yi for 0 ≤ i ≤ g/2− 3 and

the set of vertices
g/2−2
⋃

i=g/2−3

(Di(xq) ∪ Di(yq)).

To illustrate the construction of this graph G, Figure 1 depicts on the left side the

spanning tree of the (4, 6)-cage and the eliminated vertices from it are indicated inside

a box. And on the right side the resulting (3, 6)-graph after the deletion of the indicated

vertices is shown. Figure 2 depicts the spanning tree of the (4, 8)-cage and the deleted

vertices are also indicated inside a box.

Clearly, all the remaining vertices of Xg/2−2∪Yg/2−2 have degree q in G since all these

vertices have the same neighbors they had in H except the removed vertex belonging

to Dg/2−3(xq) ∪ Dg/2−3(yq). Furthermore, all the remaining vertices of Xg/2−1 ∪ Yg/2−1

have degree q in G, because they have the same neighbors they had in H except one

neighbor which was in Dg/2−2(xq) ∪ Dg/2−2(yq).
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Figure 1: Deleted vertices in the (4, 6)-cage and the resulting (3, 6)-graph on 16 vertices.

Figure 2: Deleted vertices in the (4, 8)-cage.

Therefore, H is a (q, g)-graph with g = 6, 8, 12 on

|V (H)| = 2(q − 1)(q
g−6

2 + q
g−4

2 ) = 2q
g−6

2 (q2 − 1)

vertices. Thus, the theorem is true.

Let k ≥ 3 be an integer, (k, 6)-bipartite graphs for q ≥ k a prime power and on

2(kq − 1) vertices are constructed in [3], via the incidence matrix. Next we give other

graphical construction following the same ideas as in Theorem 2.1. We use the notation

N [x] to mean the set of vertices N(x) ∪ {x}.

Theorem 2.2 Let k ≥ 3 be an integer and q > k be a prime power. Then any

(q + 1, 6)-cage contains as a subgraph a (k, 6)-bipartite graph on 2(kq − 1) vertices.

Hence

n(k, 6) ≤ 2(kq − 1).

Proof. Let H be a generalized triangle graph of degree q + 1 and girth g = 6. Let

us choose an edge xy of H and consider again the sets X1 = {x1, x2, . . . , xq} and

Y1 = {y1, y2, . . . , yq}. Observe that X2 and Y2 are partitioned into the neighborhoods

N(xi)− x and N(yj)− y, i, j ∈ {1, 2, . . . , q}, respectively. By Claim 1, each one of the

induced subgraphs H[(N(xi)−x)∪(N(yj)−y)], i, j ∈ {1, 2, . . . , q} of H define a perfect
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matching. Let denote by ℓ1, . . . , ℓq−k ∈ N(xk)−x and by r1, . . . , rq−k ∈ N(yk)−y such

that ℓiri ∈ E(H), i = 1, . . . , q − k. Then, the structure of H induce the following two

injective mappings for all t = 2, . . . , q.

ft : {ℓ1, . . . , ℓq−k} → N(yt) − y

such that ℓift(ℓi) ∈ E(H), and

ϕt : {r1, . . . , rq−k} → N(xt) − x

such that riϕt(ri) ∈ E(H). Let G be the graph obtained from H by deleting the

following set of vertices and edges.

vertices :

q
⋃

t=k+1

(N [xt] ∪ N [yt]) ∪ (N [xk] \ {ℓ1, . . . , ℓq−k}) ∪ (N [yk] \ {r1, . . . , rq−k});

edges : xtϕt(ri), ytft(ℓi), t = 1, . . . , k − 1, i = 1, . . . , q − k.

Figure 3 depicts on the left side the spanning tree of a (6, 6)-cage. The new graph G is

obtained by eliminating the vertices indicated inside a box, and the deleted edges are

indicated in dashed lines. On the right side of this figure, the resulting (3, 6)-graph G

on 28 vertices is shown.

ℓ1ℓ2

x1 x2 x3 x4 x5

x

r1r2

y5 y4 y3 y2 y1

y

y1

y2

r1ℓ1
r2

ℓ2

x1

x2

Figure 3: Eliminated vertices and edges in a (6, 6)-cage and the resulting (3, 6)-graph

on 28 vertices.

Let us see that G is a k-regular graph.

The vertices xt ∈ X1 \ {xk, xk+1, . . . , xq}, yt ∈ Y1 \ {yk, yk+1, . . . , yq} have degree k

in G because they have the same neighbors as in H except the q − k corresponding to

the removed edges xtϕt(ri), ytft(ℓi), i = 1, . . . , q − k, and the edges incident with x, y.

Vertices w ∈ X2 \
⋃k

t=2 ϕt({r1, . . . , rq−k}) have degree k in G because they have lost

q − k + 1 which are: one neighbor in N(yt) − y for each t = k + 1, . . . , q, and other
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more in N(yk) \ {r1, . . . , rq−k}. Similarly, vertices w ∈ Y2 \
⋃k

t=2 ft({ℓ1, . . . , ℓq−k}) have

degree k in G.

Vertices ft(ℓi) have degree k because they are adjacent to ri and have one neighbor

in each N(yt)− y, t = 1, . . . , k−1. Similarly ϕt(ri) is proved to have degree k. Finally,

every ℓi, i = 1, 2, . . . , q − k, has degree k because it is adjacent to ri and has other

neighbor in NH(yt) − y for each t = 1, . . . , k − 1. Similarly, ri has degree k.

The order of G is

|V (G)| = 2((k − 1) + (k − 1)q + (q − k)) = 2(kq − 1),

and clearly G has girth at least 6. To state that the girth is exactly 6 it is enough to

notice that q − 1 ≥ 3 and the number of vertices of the constructed graph is strictly

less than the lower bound given in (1) for g = 8.

Theorem 2.3 Let k ≥ 3 be an integer and q > k be a prime power. Then any

(q + 1, 8)-cage contains as a subgraph a (k, 8)-bipartite graph on 2(kq2 − k) vertices.

Hence

n(k, 8) ≤ 2k(q2 − 1).

Proof. Let H be a generalized quadrangle graph of degree q + 1 and girth g = 8.

Choose an edge xy of H and consider the sets introduced in (2), which clearly partition

V (H). Let denote by X1 = {x1, x2, . . . , xq} and Y1 = {y1, y2, . . . , yq}. Let us partition

Xi and Yi, i = 2, 3 into the following sets:

Di−1(xj) = {w ∈ Xi : ∂(w, xj) = i − 1}, j = 1, 2, . . . , q.

Di−1(yj) = {w ∈ Yi : ∂(w, yj) = i − 1}, j = 1, 2, . . . , q.

By Claim 1 each one of the induced subgraphs H[D2(xi) ∪ D2(yj)], i, j ∈ {1, 2, . . . , q}
of H define a perfect matching which induces the following one-to-one mapping:

fij : D2(xi) → D2(yj),

such that wfij(w) ∈ E(H) for all w ∈ D2(xi). Let us denote D1(xk) = {xk1, . . . , xkq},
D1(yt) = {yt1, . . . , ytq}, k, t = 1, . . . , q, hence D2(xk) =

⋃q
j=1(NH(xkj) − xk) and

D2(yt) =
⋃q

j=1(NH(ytj) − yt). Let us see that there is exactly one edge joining the

set NH(xkj) − xk and the set NH(ytj) − yt. Otherwise suppose that |(NH(ytj) −
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yt) ∩ fkt(NH(xki) − xk)| ≥ 2 for some ytj ∈ D1(yt). Then there are two distinct

vertices u, v ∈ NH(xki) − xk such that fkt(u), fkt(v) ∈ NH(ytj) − yt yielding that

xki, u, fkt(u), ytj, fkt(v), v, xki is a cycle of length 6 which is a contradiction. Therefore

|(NH(ytj) − yt) ∩ fkt(NH(xki) − xk)| = 1 for all ytj ∈ D1(yt).

Let denote L =
⋃q−k

i=1 (NH(xki) − xk) ⊂ D2(xk) and R =
⋃q−k

j=1(NH(ykj) − yk) ⊂
D2(yk). Now, let G be the induced subgraph G = H[S] − M of H where S ⊂ V (H)

and M ⊂ E(H) are the following:

S =
k−1
⋃

t=1

2
⋃

i=1

(Di(xt) ∪ Di(yt))

q−k
⋃

i=1

{xki, yki} ∪ (L ∪ R)

M = {uv ∈ E(H) : u ∈ X2 ∪ Y2, v ∈ X3 ∪ Y3, N(v) ∩ (L ∪ R) 6= ∅}.

By way of example, Figure 4 shows the spanning tree of a (5, 8)-cage. The new

graph is the induced subgraph for the vertices outside of the box for the case k = 3.

x31

x1 x2 x3 x4

x

y31

y1y2y3y4

y

Figure 4: Eliminated vertices and edges in a (5, 8)-cage for k = 3.

Let us continue proving that the degree of G is k.

Every vertex ytj ∈ D1(yt) (t = 1, . . . , k − 1, j = 1, . . . , q) has degree k in G

because NG(ytj) = NH(ytj)\ ({yt}∪ (NH(ytj)∩fkt(L)). The same argument is valid for

proving that the vertices yk1, . . . , yk,q−k ∈ D1(yk) have degree k. Similarly, every vertex

xtj ∈ D1(xt) has degree k in G because NG(xtj) = NH(xtj)\({xt}∪(NH(xtj)∩f−1
tk (R)).

If w ∈ ftk(L) then w has degree k in the new graph G, because it has lost q + 1− k

neighbors, one in each D2(xj), j = k + 1, . . . , q and one yij ∈ ⋃q−k
t=1 D1(yt) because of

the eliminated edges. Analogously, w ∈ f−1
kt (R) is proved to have degree k.

If w ∈ D2(yt) \ fkt(L), then w has degree k in the new graph G, because it has lost

q + 1 − k neighbors, one in each D2(xj), j = k + 1, . . . , q and one other more in the

removed part of D2(xk). Analogously, w ∈ D2(xt) \ f−1
tk (R) is proved to have degree k.
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Therefore we conclude that the degree is k as claimed. The order of G is

|V (G)| = 2((k − 1)(q2 + q) + (q − k)(q + 1))

= 2(kq2 − k),

and clearly G has girth at least g = 8. If q = 4 and k = 3 the girth is 8 as it is can

easily be checked working in the indicated way with a (5, 8)-cage. To state that the

girth is exactly 8 for other values of q and k, it is enough to notice that the order of

the new graph G is strictly less than the lower bound given in (1) when the girth is 10.

Theorem 2.4 Let k ≥ 3 be an integer and q ≥ k. Then any (q + 1, 12)-cage contains

a (k, 12)-graph as a subgraph on 2kq2(q2 − 1) vertices. Hence

n(k, 12) ≤ 2kq2(q2 − 1).

Proof. Let H be a generalized hexagon graph of degree q+1 and girth g = 12. Choose

an edge xy of H and consider the sets introduced in (2), which clearly partition V (H).

For any vertex u ∈ Xi and j ≤ 5 − i let

Dj(u) = {v ∈ Xi+j : ∂(u, v) = j}.

For u ∈ Yi define Dj(u) ⊂ Yi+j similarly. Note that |Dj(u)| = qj and that Xi+j =
⋃

z∈Xi
Dj(z), where the sets Dj(z), z ∈ Xi are disjoint.

Claim 2 Let i + j ≥ 6 (1 ≤ i, j ≤ 5). Then for any u ∈ Xi and v ∈ Yj there is at

most one edge between the sets D5−i(u) ⊂ X5 and D5−j(v) ⊂ Y5. If i + j = 6, then

there is exactly one edge.

Proof. Suppose on the contrary that there are two edges between the sets D5−i(u)

and D5−j(v), say u1v1 and u2v2. Then the natural walk given by the paths u →
u1, u1v1, v1 → v, v → v1, v2u2, u2 → u would contain a cycle of length at most

2(5− i) + 2(5− j) + 2 = 20− 2(i + j) + 2 ≤ 10, contradicting that the girth of H is 12.

On the second hand, suppose i+j = 6. There are exactly q ·q5−i = q6−i edges going

from D5−i(u) to Y5, where Y5 is partitioned by the qj = q6−i sets D5−j(z), z ∈ Xj, and

as seen before, only one edge can go to each set of the partition. The equal number of

edges and sets proves the statement.
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Let X1 = {x1, . . . , xq} and Y1 = {y1, . . . , yq}, furthermore let D1(xk) =

{xk1, . . . , xkq} and D1(yk) = {yk1, . . . , ykq}. Let X∗ ⊂ D4(xk) ⊂ X5 and Y ∗ ⊂ D4(yk) ⊂
Y5 be the sets

⋃q−k
i=1 D3(xki) and

⋃q−k
i=1 D3(yki), respectively.

Now let G be the subgraph H[S] − M of H where S ⊂ V (H) and M ⊂ E(H) are

the following:

S =
k−1
⋃

i=1

4
⋃

j=3

(Dj(xi) ∪ Dj(yi)) ∪
q−k
⋃

i=1

3
⋃

j=2

(Dj(xki) ∪ Dj(yki)) ,

M = {uv ∈ E(H) : u ∈ X4 ∪ Y4, v ∈ X5 ∪ Y5, N(v) ∩ (Y ∗ ∪ X∗) 6= ∅} .

Let us check if G is k-regular. Let u ∈ V (G) ∩ X5 and let the unique vertex

of N(u) ∩ X4 be denoted by r ∈ V (G). Then by Claim 2, u originally had exactly

one neighbor in each set D4(yi), i = 1, . . . , q, say u1, . . . , uq, among which u1, . . . uk−1

are in V (G), uk+1, . . . , uq are not in V (G) and uk is in V (G) depending on whether

uk ∈ Y ∗ ⊂ V (G) or not. In both cases u has exactly k neighbors in G, since either uk

is deleted and the kth neighbor of u is r or uk ∈ Y ∗, thus the edge ur ∈ E(H) is not

included in E(G).

If u ∈ V (G) ∩ X4, then all the neighbors of u in G are found in D1(u) ⊂ X5. By

Claim 2, there is exactly one edge between the sets D1(u) and D3(yki), i = 1, . . . , q,

say u1v1, . . . , uqvq. Since vi ∈ Y ∗ if and only 1 ≤ i ≤ q − k, uui ∈ E(G) if and only if

q − k + 1 ≤ i ≤ q, hence the valency of u in G is k.

The order of G is

|V (G)| = 2
(

(k − 1)(q4 + q3) + (q − k)(q3 + q2)
)

= 2q2(kq2 − k),

which finishes the proof.
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[10] P. Erdös and H. Sachs, Reguläre Graphen gegebener Taillenweite mit minimaler

Knotenzahl, Wiss. Z. Uni. Halle (Math. Nat.), 12 (1963), 251–257.

[11] G. Exoo, A Simple Method for Constructing Small Cubic Graphs of Girths 14, 15

and 16, Electronic Journal of Combinatorics, 3, 1996.

[12] W. Feit and G. Higman, The non-existence of certain generalized polygons, J.

Algebra 1 (1964), 114-131.
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