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Abstract. In the paper we consider some constructions of (k, 6)-graphs that are iso-
morphic to an induced subgraph of the incidence graph of a finite projective plane, and
present some unifying concepts. Also, we obtain new bounds on and exact values of
Zarankiewicz numbers, mainly when the parameters are close to those of a design.

1. Introduction

This paper is dedicated to the memory of András Gács and István Reiman. We wish
to present results on two well-known extremal graph theoretic problems, (k, g)-graphs
(related to cages) and the Zarankiewicz problem, that András worked on in the last
period of his life. These topics in some cases have close relations to finite geometry,
and design theory. The first, pioneering results in exploring these connections are due
to István Reiman [37, 38] in case of the Zarankiewicz problem. Although we formulate
some results in more general settings, we mainly focus on issues that are related to finite
projective planes. András had a major role in our work on (k, g)-graphs, and also took
part in obtaining our first results on the Zarankiewicz problem. Those results have been
improved later on, and we wish to publish them now.

In this section we give the preliminary definitions and notations, and introduce the two
problems. In the paper we only consider finite structures, and all graphs are simple
(without loops or multiple edges). The set of the neighbors of a vertex v will be denoted
by N(v), and |N(v)| will be referred to as the degree of v or deg(v). A graph is k-regular
if all of its vertices have degree k. The girth of a graph is the length of the shortest cycle
in it. Kn,m and Cn denote the complete bipartite graph on n + m vertices and the cycle
of length n, respectively. Note that K2,2 is isomorphic to C4. The number of edges of a
graph G will be denoted by e(G).

Definition 1.1. A (k, g)-graph is a k-regular graph of girth g. A (k, g)-cage is a (k, g)-
graph with as few vertices as possible. We denote the number of vertices of a (k, g)-cage
by c(k, g).
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A bipartite graph G with vertex classes A and B, and edge-set E will be denoted by
G = (A,B; E); we may omit the edge-set and write simply (A,B). We call (|A|, |B|) the
size of G; we may also say that G is a bipartite graph on (|A|, |B|) vertices.

Definition 1.2. A bipartite graph G = (A,B; E) is Ks,t-free if it does not contain s nodes
in A and t nodes in B that span a subgraph isomorphic to Ks,t. The maximum number
of edges a Ks,t-free bipartite graph of size (m,n) may have is denoted by Zs,t(m,n), and
is called a Zarankiewicz number.

Note that a Ks,t-free bipartite graph is not necessarily Kt,s-free if s 6= t.

We remark that Zarankiewicz’s question in its original form was formulated via matrices
in the following way: what is the minimum number of 1’s in an m × n 0 − 1 matrix that
ensures the existence of an s × t submatrix all of whose entries are 1s? This quantity
clearly equals Zs,t(m,n)+1, and it is also used as the definition of a Zarankiewicz number
(e.g., in [23]).

Determining the exact values of c(k, g) and Zs,t(m,n) is extremely hard in general. As
a bipartite graph does not contain cycles of odd length, a K2,2 = C4-free bipartite graph
automatically has girth at least 6. In fact, the incidence graph of a finite projective plane
of order n is known to be an extremal K2,2-free graph of size (n2 + n + 1, n2 + n + 1),
and it is an (n + 1, 6)-cage as well. Projective planes can be considered as designs or as
generalized polygons as well, which are incidence structures with special properties, and
are also closely related to the Zarankiewicz problem and cage graphs, respectively.

An incidence structure (P ,L, I) is a triplet of the sets P , L, and I ⊂ P×L. The elements
of P and L are referred to as points and lines (or blocks; then we write B instead of L),
respectively, and I is called the incidence relation. The incidence (or Levi) graph of an
incidence structure (P ,L, I) is the bipartite graph (P ,L, I), that is, the two classes of
vertices correspond to the point-set and the line-set of the structure, while edges are the
flags (incident point-line pairs). As bipartite graphs and incidence structures are basically
the same, we will mix the terminologies of the two notions without any further warning.
In this manner, we may call the vertices of a graph a point or a line, or we may talk about
a subgraph of an incidence structure. By the degree of a point or a line in an incidence
structure we will mean the degree of the corresponding vertex in the incidence graph. The
dual of the incidence structure (P ,L, I) is (L,P , IT ), where (l, P ) ∈ IT ⇐⇒ (P, l) ∈ I,
that is, we only interchange the words point and line (block). We will usually omit the
indication of the set I of incidences from the triplet, and we will use the notation P ∈ l
instead of (P, l) ∈ I. Conventionally, a line l ∈ L (or block B ∈ B) may be identified
with the set of points it is incident with, and hence we may also write for example |B| to
indicate the size of a block B. Also, if the elements of L are considered as lines, then we
say that the points P1, . . . , Pk are collinear if there exists a line l ∈ L incident with each
Pi (1 ≤ i ≤ k).

Definition 1.3. Let x, y ∈ P ∪ L be two objects of some incidence structure (P ,L, I).
Then the distance d(x, y) of x and y is the distance of x and y in the incidence graph,
that is, the length of the shortest path between x and y. Should there be no such path, let
d(x, y) = ∞.

Definition 1.4. Let G = (V,E) be a graph with vertex-set V . For two (finite) vertex-sets
X and Y let d(X,Y ) = min{d(x, y) : x ∈ X, y ∈ Y }. If X or Y has one element only,
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we write, for example, d(x, Y ) instead of d({x}, Y ). A ball of center v and radius r is
B(v, r) = {u ∈ V : d(v, u) ≤ r}.
Definition 1.5 (Generalized polygon, GP). An incidence structure (P ,L, I) is a gener-
alized n-gon of order (s, t) if and only if the following hold:

GP1: every point is incident with s + 1 lines;
GP2: every line is incident with t + 1 points;
GP3: the diameter and the girth of the incidence graph is n and 2n, respectively.

From GP3 it follows that if d(x, y) ≤ n− 1, then there is a unique path of length ≤ n− 1
connecting x to y. Note that the axioms of generalized polygons are symmetric in points
and lines, that is, the dual of a GP of order (s, t) is a GP of order (t, s). By definition,
the incidence graph of a generalized n-gon of order (q, q) is a (q + 1, 2n)-graph; moreover,
it is a cage. Generalized n-gons of order (q, q) exist only if n = 3, 4 or 6, and are called a
generalized triangle or projective plane, a generalized quadrangle (GQ), and a generalized
hexagon (GH) of order q, respectively. If q is a power of a prime, such generalized
polygons of order q do exist, but none is known otherwise. We also mention that one can
give alternative definitions of a GP. For example, a projective plane is commonly defined
as an incidence structure satisfying the following three properties: (i) any two lines have
a unique point in common; (ii) any two points have a unique line incident with both; (iii)
there exist four points in general position (that is, no three of them are collinear). From
these properties it follows that there exists a number q such that our incidence structure is
a generalized triangle of order (q, q). In case of generalized quadrangles, GP3 is commonly
rephrased as GQ3: for all P ∈ P and l ∈ L such that P /∈ l, there exists a unique line
e ∈ L such that P ∈ e and e intersects l.

Definition 1.6. Let ∅ 6= K ⊂ Z
+. An incidence structure (P ,B) is called a t− (v,K, λ)

design, if |P| = v, ∀B ∈ B : |B| ∈ K, and every t distinct points are contained in precisely
λ distinct blocks. If K = {k}, we write simply t − (v, k, λ).

The total number |B| = b of blocks, and the number r of blocks incident with an arbitrary
fixed point in a t−(v, k, λ) design are b = λ

(

v
t

)

/
(

k
t

)

, r = bk/v = λ
(

v−1

t−1

)

/
(

k−1

t−1

)

, respectively.
We always assume that k < v and λ ≥ 1.

The incidence graph of a t − (v, k, λ) design is Kt,λ+1-free of size (v, b) by definition, and
they turn out to have the most possible number of edges among such graphs.

Definition 1.7. We call the parameters (t, v, k, λ) admissible, if they are positive integers
satisfying 2 ≤ t, t ≤ k < v, furthermore, b := λ

(

v
t

)

/
(

k
t

)

and r := bk/v = λ
(

v−1

t−1

)

/
(

k−1

t−1

)

are
also integers.

A projective plane of order q can be considered as a generalized triangle of order (q, q),
or as a 2 − (q2 + q + 1, q + 1, 1) design. The main concept this paper considers is to look
for small (k, 6)-graphs or C4-free graphs with many edges as subgraphs of the incidence
graph of a projective plane (or more generally, of a GP or a design), and we also propose
the systematic study of this idea.

Section 2 is devoted to (k, g)-graphs (g = 6, 8, 12) as induced subgraphs of generalized
polygons. Induced regular subgraphs of GPs are obtained by deleting vertices only from
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the incidence graph of the GP. In [19], t-good structures were introduced to examine
this idea. We show that many former constructions that we are to list can be unified
with this concept. We believe that t-good structures are useful to better understand the
constructions obtained by several authors and different methods, and sometimes they
even help to give new constructions.

One may look for non-induced regular subgraphs of a GP, that is, we are allowed to
delete vertices and edges as well to obtain a regular graph from the incidence graph of the
GP. Several recent papers use these kinds of ideas, see for example [3], [6]. This method
might be examined through a natural generalization of t-good structures that is due to
Araujo-Pardo and Balbuena [5]. In many cases the (k, g)-graphs obtained in this way are
smaller than the induced ones. Also, one can extend the concept of t-good structures to
obtain biregular graphs, which we will do only in order to give a better understanding
of some 1-good structures in GQs. These ideas are rather unexplored yet, and will not
be covered by this article. We wish only to detail the results in connection with t-good
structures; for a general and recent survey on (k, g) graphs, we refer to [15]. We do not
consider constructions that use different ideas, like [16] or [1].

Section 3 is devoted to the Zarankiewicz problem, particularly the case of K2,2-free graphs.
Among others, we prove the following (more detailed formulation is given in Section 3).

Theorem 1.8. Assume that a projective plane of order n exists, and let n ≥ 15 in the
first, and n ≥ 4 in the fourth case. Then

Z2,2(n
2 + n + 1 − c, n2 + n + 1) = (n2 + n + 1 − c)(n + 1) (0 ≤ c ≤ n/2),

Z2,2(n
2 + c, n2 + n) = n2(n + 1) + cn (0 ≤ c ≤ n + 1),

Z2,2(n
2 − n + c, n2 + n − 1) = (n2 − n)(n + 1) + cn (0 ≤ c ≤ 2n),

Z2,2(n
2 − 2n + 1 + c, n2 + n − 2) = (n2 − 2n + 1)(n + 1) + cn (0 ≤ c ≤ 3(n − 1)).

Other exact values of Zarankiewicz numbers are also obtained if the parameters are small,
or they are close enough to those of a design.

2. (k, g)-graphs

For details and results on cages, we refer to the online available dynamic survey of Exoo
and Jajcay [15]. Connections with the degree/diameter problem and Moore graphs can
be found in [35].

A general lower bound on the number of vertices of a (k, g)-cage, known as the Moore
bound, is a simple consequence of the fact that the vertices at distance 0, 1, . . . , ⌊(g−1)/2⌋
from a vertex (if g is odd), or an edge (if g is even) must be distinct.

Proposition 2.1 (Moore bound).

c(k, g) ≥ M(k, g) =

{

1 + k + k(k − 1) + · · · + k(k − 1)
g−1

2
−1 for g odd;

2
(

1 + (k − 1) + (k − 1)2 + · · · + (k − 1)
g

2
−1

)

for g even.

As (k, 2n + 1)-graphs with M(k, 2n + 1) vertices coincide with Moore graphs of valency k
and diameter n, the term Moore graph is extended to any (k, g)-graph on M(k, g) vertices.
Such graphs may also be referred to as Moore cages. It is easy to see that k + 1-regular
Moore graphs with girth 2n are precisely the incidence graphs of generalized n-gons of
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order (k, k). Note that the cases g = 3 and g = 4 are trivial, the corresponding Moore
cages are complete graphs and regular complete bipartite graphs, respectively.

2.1. Some constructions of (k, g)-graphs (g = 6, 8, 12). From now on we focus on
constructions and results regarding generalized polygons, that is, the cases g = 6, 8, 12.

Starting from a projective plane of order q, Brown ([11], 1967) constructed (k, 6)-graphs
for arbitrary 4 ≤ k ≤ q by deleting some properly chosen points and lines from the plane,
that is, by removing vertices from the incidence graph of the plane. This is equivalent
to finding a k-regular induced subgraph of the incidence graph. The (k, 6)-graphs Brown
obtained have 2kq number of vertices, hence from the distribution of primes it follows
that c(k, 6) ∼ 2k2. Although Brown himself only gave one specific construction, we refer
to this construction method (deleting vertices from a projective plane of order q to obtain
a (k, 6)-graph, k ≤ q) as Brown’s method. It may be generalized to the idea of finding
(k′, g)-graphs as induced subgraphs of (k, g)-cages, k′ < k.

In 1997, Lazebnik, Ustimenko, and Woldar [33] proved the following.

Result 2.2. Let k ≥ 2 and g ≥ 5 be integers, and let q denote the smallest odd prime
power for which k ≤ q. Then

c(k, g) ≤ 2kq
3

4
g−a,

where a = 4, 11/4, 7/2, 13/4 for g ≡ 0, 1, 2, 3 (mod 4), respectively.

In particular, for g = 6, 8, 12 this gives c(k, 6) ≤ 2kq, c(k, 8) ≤ 2kq2, c(k, 12) ≤ 2kq5,
where q is the smallest odd prime power not smaller than k. Combined with the Moore
bound, this yields c(k, 8) ∼ 2k3.

Using the addition and multiplication tables of GF(q), Abreu, Funk, Labbate and Napoli-
tano ([2], 2006) constructed two infinite families of (k, 6), k ≤ q graphs via their incidence
matrices. The number of vertices of the graphs in the first and the second family are 2kq
and 2(kq +(q−1−k)), respectively. The second construction yields a graph smaller than
the previously known ones for k = q, resulting c(q, 6) ≤ 2(q2 − 1) for any prime power
q. Moreover, Abreu et al. settled a conjecture on the incidence matrices of PG(2, q), q
square, in connection with the partition of the point-set and line-set of PG(2, q) into Baer
subplanes. They verified the conjecture for q = 4, 9, and 16, which allowed them to
construct (k, 6) graphs of size 2(kq − (q − k)(

√
q + 1)−√

q) ≥ c(k, 6) for q = 4, 9, 16 and
k ≤ q.

Deleting vertices from the incidence graph of a generalized quadrangle or hexagon, Araujo,
González, Montellano-Ballesteros and Serra ([7], 2007) showed c(k, 8) ≤ 2kq2 and also
c(k, 12) ≤ 2kq4, k ≤ q, q a prime power. Their construction uses only elementary
combinatorial properties of generalized polygons. Their upper bound on c(k, 8) is the
same as that of Lazebnik et al.’s [33], but the bound on c(k, 12) is better, and leads to
c(k, 12) ∼ 2k5.

Note that the above results yield c(k, 2n) ∼ 2kn−1 for n = 2, 3, 4, 6.

2.2. Brown’s method reformulated: t-good structures, a unifying concept. Re-
garding the cases g = 6, 8, and 12, Gács and Héger [19] (2008) present a point of view that
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unifies all the above constructions (except Lazebnik, Ustimenko, and Woldar’s for g = 12)
using the concept of a t-good structure, and also started to study them systematically.

Definition 2.3. A t-good structure in a generalized polygon is a pair T = (P0,L0)
consisting of a proper subset of points P0 and a proper subset of lines L0, with the property
that there are exactly t lines in L0 through any point not in P0, and exactly t points in P0

on any line not in L0.

Removing the points and lines of a t-good structure T = (P0,L0) from the incidence
graph of a generalized n-gon of order q results in a (q + 1 − t)-regular graph of girth at
least 2n, and hence provides an upper bound on c(q + 1 − t, 2n). It is easy to see that
|P0| = |L0| for every t-good structure T , hence the size of T is defined as |P0|, and may
be denoted by |T |. Trivially, the larger t-good structure we find for a fixed t, the smaller
(q + 1 − t) regular graph we obtain. Note that this concept works in any GP.

Most known t-good structures follow the same, general pattern we give here.

The neighboring balls construction. Recall that d(x, y) denotes the distance of x
and y. Let L∗ = {l1, . . . , lt} and P∗ = {P1, . . . , Pt} be a collection of distinct lines and
points such that ∀1 ≤ i < j ≤ t the following hold:

(i) d(li, lj) = 2 (the lines are pairwise intersecting);
(ii) the unique point at distance one from li and lj (their intersection point) is an

element of P∗;
(i’) d(Pi, Pj) = 2 (the points are pairwise collinear);
(ii’) the unique line at distance one from Pi and Pj (the line joining them) is an element

of L∗.

Proposition 2.4. Let (P∗,L∗) satisfy the conditions above, and let T = (P0,L0) be the
collection of points and lines that are at distance at most n− 2 from some element of P∗

or L∗, that is, P0 ∪ L0 =
⋃t

i=1{B(Pi, n − 2)} ∪ ⋃t
i=1{B(li, n − 2)}. Then T is t-good.

Proof. Let Q /∈ P0. Then for every i (1 ≤ i ≤ t), d(Q, li) = n − 1 or n, and d(Q,Pi) = n
or n− 1, depending on n being even or odd, respectively. We may assume that n is even
(the odd case is analogous). Then for all i (1 ≤ i ≤ t) there is a unique a line ei such
that d(Q, ei) = 1 and d(ei, li) = n − 2, and these are precisely the lines of L0 that are
incident with Q. Hence we must show that these are distinct. Suppose to the contrary
that ei = ej = e for some i 6= j. Let P ∈ P∗ be the point incident with li and lj. Since
d(Q,P ) = n, d(P, e) = n − 1. But then there are two distinct paths of length n − 1 from
P to e, one through li and another one through lj, a contradiction. The same (dual)
arguments hold for lines. ¤

Note that if we allow P∗ and L∗ to have different sizes, s and t respectively, and define
T in the same way, then the same arguments show that after deleting T , every point
not in T has degree q + 1 − s or q + 1 − t, and line not in T has degree q + 1 − t or
q + 1 − s, depending on n being odd or even, respectively. Hence in order to obtain
biregular graphs, we could define (s, t)-good structures, as we will do in Subsection 2.2.2,
but mainly restrict its use to construct 1-good structures.

We will use the next definition usually in the context of a t-good structure.
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Definition 2.5. Let T = (P0,L0) be a pair of a point-set and a line-set in a GP (P ,L).
Then a point P is T -complete, if P ∈ P0, and every line incident with P is in L0. We
define a T -complete line dually.

2.2.1. t-good structures in projective planes. In the n = 3 case, that is, if we start from
an arbitrary projective plane, the conditions (i) and (i’) of the general construction hold
automatically, while conditions (ii) and (ii’) claim that (P∗,L∗) should be a (possibly
degenerate) subplane. We call a set of points and lines a degenerate subplane, if the
intersection point of its lines and the lines joining two of its points belong to it, but it does
not have four points in general position. Note that in a projective plane d(x, y) ≤ n−2 = 1
means that x = y or x is incident with y. Hence (P0,L0) consists of points and lines that
are incident with a subplane, that is, we put the points and the lines of P∗ and L∗

completely into T and delete them; thus this construction is called a completely deleted
subplane by Gács, Héger and Weiner [20].

There are two types of degenerate subplanes:

• type π1: there is an incident point-line pair (P, l) such that all points are incident
with l and all lines are incident with P ;

• type π2: there is a non-incident point-line pair (P, l) such that every point except
P is incident with l and every line except l is incident with P .

In a degenerate subplane of type π1 and π2 there are at most two or three points in
general position, respectively. Brown’s construction [11] and the first infinite family of
Abreu et al. [2] can be obtained by completely deleting degenerate subplanes (CDDS)
of type π1 from a finite projective plane, while the second family of Abreu et al. can be
constructed by CDDS of type π2, see [19]. We remark that the constructions of Abreu et
al. [2] correspond to t-good structures in PG(2, q), while Brown’s construction works in
an arbitrary finite projective plane. Also, note that a subplane has the same number of
points and lines except if it is degenerate of type π1; in that case, it may have a different
number of points and lines, hence it can be used to obtain biregular graphs.

A different construction is also given in [19]. Let T consist of the points and the lines of t
pairwise disjoint Baer subplanes. Then, using a result of Svéd [40], it can be shown that
T is t-good. It is well known that PG(2, q), q square, can be partitioned into (pairwise)
disjoint Baer subplanes, hence we may take t of them to obtain a t-good structure. Note
that if we take the union of t disjoint subplanes from the partition, it is easily seen to
be t-good without the result of Svéd. However, the disjoint Baer subplanes construction
works for arbitrary disjoint Baer subplanes. This construction is independent from the
conjecture of Abreu et al. [2], and extends their result to arbitrary square prime powers.

Regarding the sizes, the t-good structure resulting from a degenerate subplane of type π1

or π2, or a non-degenerate subplane of order t1, where t = t21 + t1 + 1, is of size tq + 1,
tq − t + 3 and tq − (t1 − 1)t, respectively. The disjoint Baer subplanes construction gives
a t-good structure of size t(q +

√
q + 1).

Gács et al. in [19] and [20] show that if t is small enough, then the Baer subplane con-
struction is optimal. Moreover, there are no other t-good structures in PG(2, q) than the
ones listed above. The precise results are the following.
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Result 2.6. Let T be a t-good structure in a projective plane of order q, t ≤ 2
√

q. Then
|T | ≤ t(q +

√
q + 1). If the plane is PG(2, q) and t < 4

√
q/2, then in case of equality T is

the union of t disjoint Baer subplanes.

Result 2.7. Let p be a prime and let T be a t-good structure in PG(2, q), q = ph;
furthermore,

• for h = 1 and h = 2, let t < p1/2/2;
• for h ≥ 3, let t < min

{

p + 1, cpq
1/6 − 1, q1/4/2

}

, where c2 = c3 = 1/8 and cp = 1
for p > 3.

Then T is either a completely deleted degenerate subplane, or the union of t disjoint Baer
subplanes.

2.2.2. t-good structures in GQs and GHs. In the cases n = 4, 6, that is, generalized
quadrangles and hexagons, two or more pairwise collinear points must all be incident
with a fixed line l1. Hence to use the neighboring balls construction for t ≥ 2, the points
of P∗ are all incident with l1, and l1 ∈ L∗. Dually, the lines of L∗ must all be incident
with a point P1 ∈ P∗, and hence P1 ∈ l1. This construction, due to Araujo et al. [7],
is analogous to the CDDS of type π1 in a projective plane. In other words, it might
be regarded as an extension of Brown’s original construction from projective planes to
generalized polygons. This gives a t-good structure of size tqn−2 + qn−3 + . . . + q + 1.

If t = 1, we may choose P∗ = {P1} and L∗ = {l1} arbitrarily, the conditions on P∗

and L∗ are trivially satisfied; hence P1 /∈ l1 is also admissible [19]. In projective planes,
this corresponds to a degenerate subplane of type π2. This construction gives a 1-good
structure of size qn−2 + 2qn−3 + qn−4 + . . . + 1, which is greater than the former one by
qn−3.

We may also define (s, t)-good structures, that is, a pair of a point-set and a line-set
T = (P0,L0) such that every line outside L0 intersects P0 in s points, and every point
outside P0 is covered by t lines of L0. By definition, T is t-good if and only if it is (t, t)-
good. It is also straightforward to check that the union T of an (s1, t1)-good structure
T1 = (P1,L1) and an (s2, t2)-good structure T2 = (P2,L2) is (s1 + s2, t1 + t2)-good if
and only if in T = (P1 ∪ P2,L1 ∪ L2) every point in P1 ∩ P2 and every line in L1 ∩ L2 is
T -complete. Note that the points of a (0, t)-good, and the lines of an (s, 0)-good structure
must be T -complete, hence their union is (s, t)-good. With this (unexplored) concept it
is comfortable to construct 1-good structures as the union of a (0, 1) and a (1, 0)-good
structure.

From now on we consider a generalized quadrangle (P ,L) of order q. For U ⊂ P, U⊥

denotes the set of points collinear with all points of U , and U⊥⊥ the set of points collinear
with all points of U⊥. (Every point is considered to be collinear with itself.) One can
similarly define W⊥ and W⊥⊥ for a set W of lines.

It is easy to see that for a pair of points {u, v},
∣

∣{u, v}⊥
∣

∣ = q + 1. A non-collinear point-

pair u, v is called regular if
∣

∣{u, v}⊥⊥
∣

∣ = q + 1 holds. The definition of a regular line pair
is analogous.

Let {u0, u1} be a regular point pair, and put {u0, u1}⊥ ∪ {u0, u1}⊥⊥ into T = (P0,L0)
completely. In other words, let P0 = {u0, u1}⊥∪{u0, u1}⊥⊥, and let L0 consist of the lines
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that intersect P0. It is not hard to check that (P0,L0) is (0, 1)-good. Similarly, a regular
line pair results in a (1, 0)-good structure. It is also easy to see that the points and the
lines at distance at most n − 2 = 2 from a fixed point P or a fixed line l (that is, a ball
of radius two) form a (1, 0) or a (0, 1)-good structure, respectively. Regular point or line
pairs do not always exist, but if they do, we can use them to construct a 1-good structure
as follows. These constructions can be found in [19], though not using the concept of
(s, t)-good structures.

Suppose that there exists a (0, 1)-good structure T = (P0,L0) arising from a regular point
pair. Uniting T with a ball of center P /∈ T , we obtain a 1-good structure will be of size
q2 + 3q + 1. If we find a regular line pair such that the lines in the resulting (1, 0)-good
structure are not incident with any point from P0, their union will be of size q2 + 4q + 3.
In the classical generalized quadrangle Q(4, q), the first construction always works, while
the second works if q > 2 is even.

Beukemann and Metsch ([10], 2011) studied one-good structures in arbitrary generalized
quadrangles of order q, and in particular, in the classical one Q(4, q). They give several
examples that work for arbitrary prime power q that can be phrased in terms of (0, 1)
and (1, 0)-good structures as above. Besides the two such structures above, they use an
ovoid or a spread to construct 1-good structures. An ovoid in a GQ is a set of q2 + 1
points that intersect every line in one point. A spread is the dual of an ovoid, that is, a
set of q2 + 1 lines that cover all point once. If O is an ovoid, then (O, ∅) is (1, 0)-good,
while for a spread S, (∅,S) is (0, 1)-good, hence can be used to obtain 1-good structures.
However, they find no larger construction than the two in [19] that works for general q.
For q = 3, they find a sporadic example of size 22 = q2 + 4q + 2. Moreover, Beukemann
and Metsch prove the following upper bound on the size of a 1-good structure in a GQ.

Theorem 2.8 ([10]). Let Q be a generalized quadrangle of order q, q > 1, and let T be a
1-good structure in Q. Then

(1) |T | ≤ 2q2 + 2q − 1;
(2) If Q is Q(4, q) and q is even, then |T | ≤ 2q2 + q + 1.

It seems that understanding t-good structures in GQs is much more difficult than in
projective planes. In the latter case the characterization of 1-good structures is almost
immediate (cf. [19]).

2.2.3. The construction by Lazebnik et al. as t-good structures. Consider the construction
of Lazebnik et al. [33]. In the cases g = 6 and 8, the graphs they construct are of the same
size as Brown’s [11] and Araujo et al.’s [7], respectively. We show that just as the latter
two, Lazebnik et al.’s construction can also be interpreted as a special case of Brown’s
method, that is, it is isomorphic to a graph obtained by deleting a t-good structure from
a projective plane or a GQ.

First they construct an incidence structure D(q) as follows. Points and lines of D(q) are
written inside a parenthesis () or brackets [], respectively. Consider the vectors (P ) and
[l] of infinite length over GF(q):

(P ) = (p1, p11, p12, p21, p
′

22, p23, . . . , pii, p
′

ii, pi,i+1, pi+1,i, . . .),

[l] = [l1, l11, l12, l21, l
′

22, l23, . . . , lii, l
′

ii, li,i+1, li+1,i, . . .].
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A point (P ) and a line [l] are incident if and only if the following infinite list of equations
hold simultaneously:

l11 − p11 = l1p1

l12 − p12 = l11p1

l21 − p21 = l1p11

lii − pii = l1pi−1,i

l′ii − p′ii = li−1,ip1

li,i+1 − pi,i+1 = li,ip1

li+1,i − pi+1,i = l1p
′

ii,

where the last four equations are defined for all i ≥ 2. For an integer n ≥ 2, let D(n, q)
be derived from D(q) by projecting every vector onto its initial n coordinates. Then the
point-set Pn and the line-set Ln of D(n, q) both have qn elements, and incidence is defined
by the first n− 1 equations above. Note that those involve only the first n coordinates of
(P ) and [l], hence apply to the points and lines of D(n, q) unambiguously. D(n, q) as a
bipartite graph can be proved to be q-regular and have girth at least n + 4 (thus at least
n + 5 if n is odd).

Let R,S ⊂ GF(q), where |R| = r ≥ 1 and |S| = s ≥ 1, and let

PR = {(P ) ∈ Pn : p1 ∈ R},LS = {[l] ∈ Ln : l1 ∈ S}.

The graph D(n, q, R, S) is defined as the subgraph of D(n, q) induced by PR ∪LS. It can
be shown that every vertex in PR or LS in D(n, q, R, S) has degree s and r, respectively.

In the case n = 2, P2 = {(p1, p11) ∈ GF(q)2} and L2 = {[l1, l11] ∈ GF(q)2}, and a point
(x, y) ∈ P2 is incident with the line [m, b] ∈ L2 if and only if b − y = mx. Let

ϕ : D(2, q) → AG(2, q)

(x, y) 7→ (x, y)

[m, b] 7→ {(x, y) : y = −mx + b}.
The mapping ϕ is clearly injective and preserves incidence, hence it is an embedding of
D(2, q) into AG(2, q) ⊂ PG(2, q). Note that vertical lines are not in the image, hence
ϕ(D(2, q)) can be obtained by deleting the ideal line together with its points and the ver-
tical lines from PG(2, q). If we consider the induced subgraph D(2, q, R, S), geometrically
it means that we take points only on the vertical lines X = x : x ∈ R and lines with slopes
−m ∈ S. In other words, we delete (besides the formerly deleted points and lines) all the
points of the vertical lines X = x : x /∈ R, and we delete all lines having slopes −m /∈ S;
that is, we delete the lines that intersect the ideal line in a direction (or point) (m) with
−m /∈ S. Hence this construction corresponds to a (q + 1 − r, q + 1 − s)-good CDDS of
type π1.

To see why the construction for n = 3 (that is, g = 8) is isomorphic to an (s, t)-good
structure in a GQ, we give an explicit description of PG(3, q) and the classical generalized
quadrangle W (q) first.

The projective space PG(3, q) can be represented as the system of non-zero dimensional
subspaces of GF(q)4, that is, the points, the lines and the planes of PG(3, q) correspond
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to the one, two and three dimensional subspaces of GF(q)4, respectively. Hence, a point
of PG(3, q) can be represented by a nonzero vector of GF(q)4 that is defined up to a
non-zero scalar multiplier. We write this representative as (x : y : z : w), where the
colons express that the coordinates are homogeneous. A line l of PG(3, q) corresponds
to a plane of GF (q)4, and hence can be defined as the span of two vectors, that is,
l = {α(x : y : z : w) + β(x′ : y′ : z′ : w′) | (α, β) ∈ GF(q)2 \ {(0, 0)}} for some distinct
points (x : y : z : w) and (x′ : y′ : z′ : w′) of PG(3, q).

The generalized quadrangle W (q) is defined by a non-degenerate symplectic form over
PG(3, q). Let q be an odd prime power. Take a matrix A ∈ GF(q)4×4 such that AT = −A,
and for x, y ∈ GF(q)4, let x ∼ y (x perpendicular to y) if and only if xAy = 0. Note that
the relation ∼ is well defined over PG(3, q), and for all x ∈ GF(q)4 : x ∼ x. The points of
W (q) are those of PG(3, q), and the lines of W (q) are those of PG(3, q) that are totally
isotropic, that is, any two points of which are perpendicular. Note that if x ∼ y, then
(αx + βy) ∼ (γx + δy) for all α, β, γ, δ ∈ GF(q), hence two points x and y are collinear in
W (q) if and only if x ∼ y. Thus a point is incident with a line in W (q) if and only if it
is perpendicular to at least two of its points (and hence to all of them). It can be proved
that W (q) is a generalized quadrangle of order (q, q).

Now the graph D(3, q) has point-set P3 = {(x, y, z) ∈ GF(q)3} and line-set L3{[a, b, c] ∈
GF(q)3}, where (x, y, z) ∈ [a, b, c] if and only if b − y = ax and c − z = bx. Now let

ϕ : D(3, q) → PG(3, q)

(x, y, z) 7→ (x : y : z : 1)

[a, b, c] 7→ {α(1 : −a : −b : 0) + β(0 : b : c : 1) | (α, β) ∈ GF(q)2 \ {(0, 0)}},

furthermore, let

A =









0 1 0 0
−1 0 0 0
0 0 0 1
0 1 −1 0









.

We claim that ϕ is an embedding of D(3, q) into W (q) defined by the symplectic form
coming from A. It is clear that ϕ is injective. Moreover, (x, y, z) ∈ [a, b, c] ⇐⇒ b−y = ax
and c − z = bx ⇐⇒ (x : y : z : 1)A(1 : −a : −b : 0) = 0 and (x : y : z : 1)A(0 : b : c :
1) = 0 ⇐⇒ (x : y : z : 1) is on the line spanned by (1 : −a : −b : 0) and (0 : b : c : 1),
hence ϕ preserves incidence.

Note that the q2 + q + 1 points collinear with P1 = (0 : 0 : 1 : 0) in W (q) (that is, points
of form (x : y : z : 0), or in other words, the points of the plane at infinity) are not in the
image of ϕ; moreover, lines intersecting the line l1 = {(0 : α : β : 0)} are also excluded (no
lines in the image contain a point with first and fourth coordinates both 0). This means
that ϕ(D(3, q)) ⊂ W (q) is obtained from W (q) by deleting every point collinear with P1

and every line intersecting l1. As P1 ∈ l1, this corresponds to a 1-good neighboring balls
construction.

Now the points (x : y : z : 1), with x /∈ R fixed, are precisely the q2 points collinear to
Px = (0 : 1 : x : 0) ∈ l1 not on l1. The lines {α(1 : −a : −b : 0) + β(0 : b : c : 1)}, with
a /∈ S fixed, are precisely the q2 lines intersecting the line la = {γ(1 : −a : 0 : 0) + δ(0 :
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0 : 1 : 0)} not in P1. Hence ϕ(D(3, q, R, S)) can be obtained by deleting the balls around
P∗ = {Px : x /∈ R} ∪ {P1} and L∗ = {la : a /∈ S} ∪ {l1}.

3. The Zarankiewicz problem

In the Introduction (see Definiton 1.2) we stated Zarankiewicz’s problem. Here we focus
on results for s = t = 2, that is, determining the maximum number of edges in K2,2-free
bipartite graphs. The history of the problem and early results are collected in Guy [23],
so we only discuss some of the results. Kővári, T. Sós and Turán [32] proved Z2,2(m,n) <
[n3/2]+2n and limn→∞ Z2,2(m,n)/n3/2 = 1. They also observed, using finite affine planes,
that Z2,2(p

2, p2 + p) = p2(p + 1) for p prime. The case m = n was studied in detail by
Reiman.

Theorem 3.1 (Reiman [37]). Let G be a K2,2-free bipartite graph of size (n, n). Then the
number of edges in G satisfies the inequality

e(G) ≤ n

2

(

1 +
√

4n − 3
)

.

Equality holds if and only if n = k2 + k + 1 for some k and G is the incidence graph of a
projective plane of order k.

In the same paper Reiman proved Z2,2(m,n) ≤ 1
2

(

n +
√

n2 + 4nm(m − 1)
)

and clarified

the connection of Z2,2(p
2, p2 + p) = p2(p + 1) with affine planes. Later Reiman [38] went

on to study Zarankiewicz’s problem for s = 2 and larger t, and proved Z2,λ+1(m,n) ≤
1
2

(

n +
√

n2 + 4λnm(m − 1)
)

with equality if and only if there is a 2 − (m, k, λ)-design,

and the bipartite graph is the incidence graph of the design. Here n = m(m−1)λ/(k(k−1))
is the number of blocks in this design. This upper bound was also proved by Hyltén-
Cavallius [25]. The connection of Zarankiewicz’s problem for general s, t and block designs
was noted in a particular case by Kárteszi [29, 30], and done in detail by Roman [39] (see
Theorem 3.5). We give two more early results that provide exact values for Zs,t(m,n) if
n is much larger than m.

Theorem 3.2 (C̆uĺık [14]). If 1 ≤ s ≤ m and n ≥ (t − 1)
(

m
s

)

, then

Zs,t(m,n) = (s − 1)n + (t − 1)

(

m

s

)

.

Theorem 3.3 (Guy [23]). If ℓ(n, s, t) ≤ n ≤ (t − 1)
(

m
s

)

+ 1, then

Zs,t(m,n) =

⌊

(s2 − 1)n + (t − 1)
(

m
s

)

s

⌋

,

where ℓ(n, s, t) is approximately (t − 1)
(

m
s

)

/(s + 1).

Irving [27] gave a method which can be used to explicitly calculate an upper bound for
Zs,t(m,n) in case of given parameters; his idea was also investigated in [21]. One may
also realte s and t to n and m (e.g., s = n/2, t = m/2); for such studies see [9], [22]
and their references. For general bounds, we refer to Füredi [17, 18], Kollár-Rónyai-Szabó
[31], Alon-Rónyai-Szabó [4], Nikiforov [36], and the references therein.
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3.1. Roman’s inequality. Let I ⊂ R be an interval, f : I → R a strictly increasing
convex function, n ∈ N, x1, . . . , xn ∈ I ∩ Z, A :=

∑n
i=1 xi = np + r for some p ∈ Z, 0 ≤

r < p. Then Jensen’s inequality for integers claims
∑n

i=1 f(xi) ≥ rf(p+1)+(n−r)f(p) =
(A− np)f(p + 1) + (n(p + 1)−A)f(p) = A(f(p + 1)− f(p))− n(pf(p + 1)− (p + 1)f(p)),
that is, A ≤ (

∑n
i=1 f(xi) + n(pf(p + 1) − (p + 1)f(p))) /(f(p+1)− f(p)). Roman’s ideas

[39] can be used to prove this inequality for general p ∈ Z.

Theorem 3.4 (Roman’s inequality). Let I ⊂ R be an interval, f : I → R a strictly
increasing convex or a strictly decreasing concave function, n ∈ N, x1, . . . , xn, p, p + 1 ∈
I ∩ Z. Then

n
∑

i=1

xi ≤
∑n

i=1 f(xi)

f(p + 1) − f(p)
+ n · pf(p + 1) − (p + 1)f(p)

f(p + 1) − f(p)
.

Equality holds if and only if xi ∈ {p, p+1} for every 1 ≤ i ≤ n or {x1, . . . , xn, p, p+1} ⊂ I ′

for an interval I ′ on which f is linear.

It can be shown that the best choice of p is indeed ⌊A/n⌋, hence Roman’s inequality
follows from Jensen’s one. We note that Irving’s method [27] for s = t = 2 is nothing else
but Jensen’s inequality for integers; however, for higher values of s and t it may give much
better results. The advantage of Roman’s bound is that we may choose the parameter
p freely to obtain an upper bound on A =

∑

xi in a comfortable way, while in Jensen’s
inequality one has to use ⌊A/n⌋, where we are about to estimate A. We will use the
following bound that was explicitly proved in [39].

Theorem 3.5 (Roman’s bound [39]). Let G = (A,B; E) be a Ks,t-free bipartite graph of
size (m,n), and let p ≥ s − 1. Then the number of edges in G satisfy

e(G) ≤ (t − 1)
(

p
s−1

)

(

m

s

)

+ n · (p + 1)(s − 1)

s
.

Equality holds if and only if every vertex in B has degree p or p + 1 and every s-tuple in
A has exactly t − 1 common neighbors in B.

Definition 3.6. For s, t,m, n, p ∈ N, p ≥ s − 1, let

R(s, t,m, n, p) :=
(t − 1)
(

p
s−1

)

(

m

s

)

+ n · (p + 1)(s − 1)

s
.

Remark 3.7. If (t, v, k, λ) are admissible parameters in the sense of Definition 1.7, then
R(t, λ + 1, v, b, k) = bk = rv is integer.

The incidence graphs of t−(v, {k, k+1}, λ) designs are Kt,λ+1-free, and these are precisely
the graphs that satisfy the conditions of equality in Roman’s bound. Bipartite graphs
that are in some sense very close to 2 − (v, {k, k + 1}, 1) designs were also considered in
[12].

Example 3.8. a) If we delete one point arbitrarily from a t−(v, k, λ) design D, we obtain
a t − (v − 1, {k − 1, k}, λ) design D′.

b) Take a 2 − (v, k, 1) design D and delete a block from it with all, or all but one of its
points. The obtained structure D′ will be a 2− (v− k + a, {k− 1, k}, 1) design, a ∈ {0, 1}.
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c) Delete two intersecting lines from an affine plane of order n (a 2 − (n2, n, 1) design).
In this way we get a 2 − (n2 − 2n + 1, {n − 2, n − 1}, 1) design.

3.2. Results on the Zarankiewicz problem. To prove our first result, we need a
theorem of Metsch.

Result 3.9 (Metsch [34]). Let n ≥ 15, (P ,L, I) be an incidence structure with |P| =
n2 + n + 1, |L| ≥ n2 + 2 such that every line in L is incident with n + 1 points of P and
every two lines have at most one point in common. Then a projective plane Π of order n
exists and (P ,L, I) can be embedded into P. ¤

Lemma 3.10. Let n ≥ 15, G = (P ,L, I) be an incidence graph with |P| = n2 + n + 1,
|L| ≥ n2 + 2 such that every line in L is incident with at least n + 1 points of P, and
every two lines have at most one point in common. Then a projective plane Π of order
n exists, and (P ,L, I) can be embedded into P; specially, every line in L is incident with
exactly n + 1 points of P.

Proof. By deleting edges from G, we can obtain a graph G′ = (P ,L, I ′) in which the
vertices of L have degree exactly n + 1. Then, by Theorem 3.9, G′ is a subgraph of a
projective plane Π of order n. Now suppose that there is a line l in L that has degree at
least n + 2 in G. This means that there exists a point P such that l is incident with P
in G, but not in Π. Then each of the n + 1 lines passing through P in Π intersects l in a
point different from P . As |L| ≥ n2 + 1, at least one of these lines is a line of G as well,
but it intersects l in at least two points in G, a contradiction. Hence every line has n + 1
points in G. ¤

Theorem 3.11. Let n ≥ 15, and c ≤ n/2. Then

Z2,2(n
2 + n + 1 − c, n2 + n + 1) ≤ (n2 + n + 1 − c)(n + 1).

Equality holds if and only if a projective plane of order n exists. Moreover, graphs giving
equality are subgraphs of the incidence graph of a projective plane of order n.

Proof. If a projective plane of order n exists, deleting c of its lines yields a graph on
(n2 + n + 1 − c, n2 + n + 1) vertices and (n2 + n + 1 − c)(n + 1) edges.

Suppose that G = (A,B; E) is a K2,2-free graph on (n2 + n + 1 − c, n2 + n + 1) vertices
and e(G) ≥ |A|(n + 1) edges. Let m be the number of vertices in A of degree at most n
(low-degree vertices). Assume that m ≥ n−c. Delete (n−c) low-degree vertices to obtain
a graph G′ on (n2 + 1, n2 + n + 1) vertices with at least (n2 + 1)(n + 1) + (n − c) edges.
By Roman’s bound with p = n, Z2,2(n

2 + 1, n2 + n + 1) ≤ (n2 + 1)(n + 1) + (n − 1)/2,
hence n − c ≤ (n − 1)/2. This contradicts c ≤ n/2, thus m < n − c must hold.

Now delete all the low-degree vertices from A to obtain a graph G′ on the vertex sets
(A′, B) with |A′| ≥ n2 + 2, |B| = n2 + n + 1. Then every vertex in A′ has degree at least
n+1, hence we can apply Lemma 3.10 to derive that G′ can be embedded into a projective
plane Π of order n, therefore every vertex in A′ has degree n + 1, which combined with
e(G) ≥ |A|(n + 1) yields that every vertex in A has degree n + 1 (in G), thus G itself can
be embedded into Π. ¤

Remark 3.12. If we knew Z2,2(n
2 + 1, n2 + n + 1) ≤ (n2 + 1)(n + 1) + δ, then the above

argument would hold for c < n − δ. Removing n points (or lines) from a projective plane
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of order n we get Z2,2(n
2 +1, n2 +n+1) ≥ (n2 +1)(n+1). Note that an affine plane plus

an extra line containing a single point shows Z2,2(n
2, n2 + n + 1) ≥ n2(n + 1) + 1.

Question 3.13. Is it true that Z2,2(n
2 + 1, n2 + n + 1) ≤ (n2 + 1)(n + 1) (if n is large

enough)?

Remark 3.14. The upper bound on the number of edges in Theorem 3.11 is a direct
consequence of Roman’s bound if c(c − 1) < 2n without assuming n ≥ 15.

The next result is based on a very simple observation, which was also pointed out by
Guy [23], p138, point C. Let F be a subgraph-closed family of bipartite graphs, that is, if
G ∈ F and H is a subgraph of G, then H ∈ F . For example, Ks,t-free graphs clearly form
a subgraph-closed family. Let F(m,n) = {G = (A,B; E) ∈ F : |A| = m, |B| = n}, and
let exF(m,n) = max{e(G) : G ∈ F(m,n)}, and let ExF(m,n) = {G ∈ F(m,n) : e(G) =
exF(m,n)}. Graphs of ExF(m,n) are called extremal.

Theorem 3.15. Let F be a subgraph-closed family of bipartite graphs, suppose that
exF(m,n) ≤ e, and let c ∈ N. Then

(1) exF(m + c, n) ≤ e + c⌊e/m⌋;
(2) exF(m,n + c) ≤ e + c⌊e/n⌋.

Moreover, if equality holds in, say, (1) for some c ≥ 1, then equality holds for all c′ ∈ N,
0 ≤ c′ < c as well, and any G ∈ ExF(m + c, n) has an induced subgraph that is in
ExF(m + c − 1, n).

Proof. It is enough to prove (1), as (2) is completely analogous. We prove the assertion by
induction on c. The statement is trivial if c = 0. Let d = ⌊e/m⌋. Suppose exF(m+c, n) ≥
e+cd, and let G = (A,B; E) ∈ ExF(m+c, n). There is no vertex of degree strictly smaller
than d in A, otherwise removing such a vertex we would obtain a graph in F(m+c−1, n)
with more than e + (c − 1)d edges, which is not possible by the inductive hypothesis.
Consider an arbitrary subgraph of G on (m,n) vertices. By the definition of d, we find
a vertex in A of degree d. Removing this vertex we obtain a graph of F(m + c − 1, n)
with at least, hence (by the inductive hypothesis) exactly e + (c − 1)d edges. Thus
exF(m + c − 1, n) = e + (c − 1)d, and exF(m + c, n) = e(G) = e + cd. ¤

For example, the above theorem can be used if we start from a design or a 2− (v, {k, k +
1}, 1) design obtained by deleting a block from a 2 − (v′, k + 1, 1) (Example 3.8 b)).

Corollary 3.16. (i) Let (t, v, k, λ) be admissible parameters (with b = λ
(

v
t

)

/
(

k
t

)

, r =

λ
(

v−1

t−1

)

/
(

k−1

t−1

)

), and let 0 ≤ c ∈ N. Then

Zt,λ+1(v + 1 + c, b) ≤ rv + λ

(

v
t−1

)

(

k
t−1

) + c(r − 1).(3.1)

(ii) Let (2, v, k, 1) be admissible parameters. Then

Z2,2(v − k + c, b − 1) ≤ (v − k)r + c(r − 1).(3.2)

Moreover, if a 2 − (v, k, 1) design exists, then equality holds in (3.2) for all 0 ≤ c ≤ k.
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Proof. (i) We apply Theorem 3.15 with m = v + 1, n = b. By Roman’s bound we see
rv = R(t, λ + 1, v, b, k) = λ

(

v
t

)

/
(

k
t−1

)

+ b(k + 1)(t − 1)/t, furthermore

Z2,λ+1(v + 1, b) ≤ e := R(t, λ + 1, v + 1, b, k) = λ

(

v+1

t

)

(

k
t−1

) +
b(k + 1)(t − 1)

t
= rv + λ

(

v
t−1

)

(

k
t−1

) .

It is easy to see that r < λ
( v

t−1
)

( k

t−1
)
, thus ⌊e/(v + 1)⌋ = r − 1.

(ii) Here r = (v − 1)/(k − 1). Simple computations show that Z2,2(v − k, b − 1) ≤
R(2, 2, v−k, b−1, k−1) = r(v−k), thus the case c = 0 is verified. As Z2,2(v−k+1, b−1) ≤
e := R(2, 2, v − k + 1, b − 1, k − 1) = r(v − k) + (v − k)/(k − 1) < r(v − k) + r, Theorem
3.15 with m = v − k + 1, n = b − 1 proves the assertion. ¤

We remark that a t−(v, k, 1) design is also called a Steiner system; in particular, 2−(v, 3, 1)
and 3 − (v, 4, 1) designs are also known as Steiner triple systems (STS) and Steiner
quadruple systems (SQS), respectively (see e.g. [13]). For k = 3, 4 or 5, a 2 − (v, k, 1)
design exists whenever v ≡ 1 or 3 (mod 6), v ≡ 1 or 4 (mod 12), or v ≡ 1 or 5 (mod 20),
respectively. These can be used to obtain some exact values of Z2,2(m,n).

In case of affine planes, embeddibility theorems are available, thus we can formulate
stronger results. Recall that an affine plane of order n is always embeddable into a
projective plane of order n. Totten [41] also has a result on the complement of two lines
in a projective plane (that is, we delete one line and all its points from an affine plane).

Result 3.17 (Totten [41]). Let S = (P ,L) be a finite linear space (that is, an incidence
structure where any two distinct points are contained in a unique line) with |P| = n2 −n,
|L| = n2 +n−1, 2 ≤ n 6= 4, and every point having degree n+1. Then S can be embedded
into a projective plane of order n.

Corollary 3.18. Let S = (P ,L) be a finite partial linear space (that is, an incidence
structure where any two distinct points are contained in at most one line) with |P| = n2−n,
|L| = n2 + n− 1, n > 4, in which the number of flags is at least (n2 − n)(n + 1). Then S
is a linear space, and it can be embedded into a projective plane of order n.

Proof. As R(2, 2, n2−n, n2+n−1, n−1) = (n2−n)(n+1), each line in L has degree n−1 or
n, and any two distinct points must be contained in a unique line. The average degree of a
point is n+1. Now suppose that there is a point P of degree at least n+2. Then the number
of points on the lines incident with P is at least 1+(n+2)(n−2) = n2−3 > |P| = n2−n
(by n > 4). Hence every point has degree n + 1, so by Totten’s Result 3.17, S is the
complement of two lines in a projective plane of order n. ¤

Corollary 3.19. Let c ∈ N. Then

Z2,2(n
2 + c, n2 + n) ≤ n2(n + 1) + cn,(3.3)

Z2,2(n
2 − n + c, n2 + n − 1) ≤ (n2 − n)(n + 1) + cn,(3.4)

Z2,2(n
2 − 2n + 1 + c, n2 + n − 2) ≤ (n2 − 2n + 1)(n + 1) + cn, if n ≥ 4.(3.5)

Equality can be reached in all three inequalities if a projective plane of order n exists and
c ≤ n + 1, c ≤ 2n, or c ≤ 3(n − 1), respectively.
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Moreover, if c ≤ n + 1, or c ≤ 2n and n > 4, then graphs reaching the bound in (3.3) or
(3.4), respectively, can be embedded into a projective plane of order n.

Proof. The parameters of an affine plane, (2, n2, n, 1) (with b = n2 + n, r = n + 1) are
admissible. Hence (3.3) and (3.4) follow from Corollary 3.16. To apply Theorem 3.15 in
(3.5), simply calculate that R(2, 2, n2−2n+1, n2 +n−2, n−2) = (n2−2n+1)(n+1) = e,
and that R(2, 2, n2 − 2n + 2, n2 + n− 2, n− 2) = e + n + 1/(n− 2) < (n2 + 2n + 2)(n + 1)
(n ≥ 4).

By taking a projective plane of order n, and deleting one, two, or three of its lines and
all but c of their points each of which is contained in only one of the deleted lines, we can
reach equality in (3.3), (3.4), and (3.5), respectively.

In (3.3), Theorem 3.15 also provides an affine plane of order n as an induced subgraph
in graphs obtaining equality. Now the c extra points of degree n must be incident with
pairwise non-intersecting lines to avoid C4’s in the graph; that is, they can be considered
as the common points of c distinct parallel classes. Adding the missing n + 1 − c ideal
points and the line at infinity, we obtain a projective plane of order n.

In (3.4), Theorem 3.15 provides us an extremal C4-free subgraph G = (A,B) on (n2 −
n, n2 +n−1) vertices and (n2 −n)(n+1) edges in graphs reaching equality. By Corollary
3.18, G can be embedded into a projective plane of order n. As before, it is easy to see
that the embedding extends to the c extra points as well. ¤

Next we prove a straightforward recursive inequality. For a bipartite graph G = (A,B; E)
and vertex-sets X ⊂ A and Y ⊂ B, let G[X,Y ] denote the subgraph of G induced by
X ∪ Y .

Proposition 3.20. Let Us,t(m,n, α, β) = Zs−α,t(m−α, β)+Zs,t(m−α, n−β)+(α−1)n+β.
Then

Zs,t(m,n) ≤ min
α

max
β

min{Zα,β+1(m,n), Us,t(m,n, α, β) : 1 ≤ α < s, t − 1 ≤ β ≤ n}.

Proof. Let G = (A,B; E) be a maximal Ks,t-free bipartite graph on m + n vertices. Let
1 ≤ α < s, and let β be the largest integer for which Kα,β is a subgraph of G (the ordering
of the classes does matter). Then |E| ≤ Zα,β+1(m,n) follows from G being Kα,β+1-free.
Now let S ⊂ A and T ⊂ B induce a Kα,β, and let U = A\S, V = B\T . Then G[U, T ] must
be Ks−α,t-free, G[U, V ] is Ks,t-free; moreover, since no Kα,β+1 can be found in G, every
vertex in V may have at most α−1 neighbors in S. Summing up the maximum number of
edges in each part, we get |E| ≤ αβ+Zs−α,t(m−α, β)+Zs,t(m−α, n−β)+(α−1)(n−β) =
Us,t(m,n, α, β). As G is maximal, it must contain a Kα,t−1 for all α < s, hence we have
β ≥ t − 1. ¤

Remark 3.21. In particular, the case α = 1 of this inequality investigates the vertex
with largest degree. Zs,t(m, 0) is defined to be zero (which occurs above for β = n). Note
that we may interchange the role of the classes, that is, write up the above inequality for
Zt,s(n,m). We will call this the transpose of Proposition 3.20.

Remark 3.22. In case of α = s− 1, the function Us,t(m,n, s− 1, β) is non-increasing in
β (β ≥ t − 1), while Zs−1,β+1(m,n) is clearly non-decreasing. Thus the maximum of the
minimum of these two values in β can be found easily.
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Proof.

Us,t(m,n, s − 1, β) = Z1,t(m − s + 1, β) + Zs,t(m − s + 1, n − β) + (s − 2)n + β =

(t − 1)(m − s + 1) + (s − 2)n + β + Zs,t(m − s + 1, n − β).

By adding a vertex of degree t − 1, we have Zs,t(m − s + 1, n − β) ≥ Zs,t(m − s + 1, n −
(β + 1)) + t − 1. ¤

This recursion is useful in some cases. For example, Roman’s bound with p = 4 or 5
yields Z3,3(7, 7) ≤ 35. We show Z3,3(7, 7) ≤ 33. (Here, in fact, equality holds.) Let
α = 2. For β ≤ 4 we have Z2,β+1(7, 7) ≤ R(2, 5, 7, 7, 5) = 33, while U3,3(7, 7, 2, 4) =
Z1,3(5, 4) + Z3,3(5, 3) + 7 + 4 = 33. By Remark 3.22, we are done. Other examples that
prove this recursion useful are the balanced C4-free graphs.

Proposition 3.23. Let 2 ≤ q ∈ N, 3 − q ≤ c ≤ 1 + q. Then

Z2,2(q
2 + c, q2 + c) ≤ (q2 + c)(q +

1

2
) +

( c

2
− 1

)

q +
c

2
+

(c − 1)(c − 2)

2(q − 1)
.

Proof. Consider the bounds in Corollary 3.22 with s = t = 2. If β ≤ q, then Z1,β+1(q
2 +

c, q2 + c) ≤ q(q2 + c), which is smaller than the bound stated provided that c ≥ 3 − q.
Hence we may assume β ≥ q+1. Then the second expression is (q2 +c−1)+β +Z2,2(q

2 +
c− 1, q2 + c− β) ≤ q2 + q + c + Z2,2(q

2 + c− 1, q2 + c− q − 1). Applying Roman’s bound
with p = q − 1 to Z2,2(q

2 + c − q − 1, q2 + c − 1), we get the desired result. ¤

Remark 3.24. It is easy to calculate that for 3− q ≤ c ≤ 1 + q, Roman’s upper bound on
Z2,2(q

2 + c, q2 + c) gives the best result if we set p = q. The bound in Proposition 3.23 is
smaller than Roman’s one by

q − c

2
+

(2q − c)(c − 1)

2q(q − 1)
.

In the rest of this section we tackle Roman’s bound and the recursive idea to establish some
results that are tight if we are close to a design. Without a strong embedding theorem
like Result 3.9, we obtain weaker results. The next proposition is a direct consequence of
Roman’s bound.

Proposition 3.25. Assume that the parameters (t, v, k, λ) are admissible, and let c0 be
the largest integer such that λ

((

v−c0
t

)

+ c0

(

v−1

t−1

)

−
(

v
t

))

<
(

k−1

t−1

)

. Then for every 0 ≤ c ≤ c0,

Zt,λ+1(v − c, b) ≤ r(v − c).

Equality can be reached if a t − (v, k, λ)-design exists. Moreover, if c < c0, then in the
graphs obtaining equality, the vertices in the class of size v−c have degree r. In particular,
the condition for t = 2 is c0(c0 − 1) < 2(k − 1)/λ.

Proof. Removing c points from the incidence graph of a t − (v, k, λ) design we obtain a
Kt,λ+1-free graph on (v − c, b) nodes and r(v − c) edges.

On the other hand, using rv = bk and bk/t = λ
(

v
t

)

/
(

k−1

t−1

)

, Roman’s bound with p = k − 1
yields

Zt,λ+1(v−c, b) ≤
⌊

λ
(

k−1

t−1

)

(

v − c

t

)

+ b · k(t − 1)

t

⌋

= r(v−c)+

⌊

λ
((

v−c
t

)

+ c
(

v−1

t−1

)

−
(

v
t

))

(

k−1

t−1

)

⌋

.
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Suppose that G = (A,B) is Kt,λ+1-free on (v − c, b) vertices and (v − c)r edges, c < c0.
Assume that there is a vertex u ∈ A with degree smaller than r. Removing u from A,
we obtain a graph on (v − c − 1, b) vertices and more than (v − c − 1)r edges, which
contradicts our upper bound. ¤

The recursive inequality of Proposition 3.20 can be used to achieve another bound in a
more special case.

Proposition 3.26. Let (2, v, k, 1) be admissible parameters. Then

Z2,2(v + 1, b) ≤ bk + b − k(r − 1).

Proof. Let G = (A,B; E) be an extremal K2,2-free bipartite graph of size (v +1, b). Then
there must be a vertex in B with degree at least k + 1. Thus by Remark 3.22, we may
use the transpose of Proposition 3.20 with α = 1, β = k + 1 to obtain

e(G) ≤ U2,2(b, v + 1, 1, k + 1) = (b − 1) + k + 1 + Z2,2(b − 1, v − k).

Now Z2,2(b−1, v−k) ≤ (v−k)r, as deleting a block and its points from a 2−(v, k, 1) design
would result in a structure seen in Example 3.8 (so R(2, 2, v − k, b− 1, k− 1) = (v− k)r).
Hence e(G) ≤ k + b + (v − k)r = bk + b − k(r − 1). ¤

Corollary 3.27. Let n ≥ 2. Then Z2,2(n
2 +n+2, n2 +n+1) ≤ (n2 +n+1)(n+1)+1,

and equality holds if and only if a projective plane of order n exists. Moreover, any graph
G reaching equality can be obtained in the following way: take a projective plane (P ,L)
of order n, let A = P ∪ {u0} (u0 /∈ L ∪ P), B = L. Take any point v ∈ L, and let
{u1, . . . , un+1} be its neighbors in P. Let H be any subset of the neighbors of u1, for
which v /∈ H. Delete the edges u1v

′ for all v′ ∈ H, and add the edges u0v and u0v
′ for all

v′ ∈ H. In particular, there must be a vertex in A with degree at most n/2 + 1.

Proof. Proposition 3.26 applied to a projective plane of order n (with parameters v = b =
n2+n+1, t = 2, λ = 1, k = n+1) yields Z2,2(n

2+n+1, n2+n+2) ≤ (n2+n+1)(n+1)+1.
Now let G = (A,B) be a C4-free graph on (n2 + n + 2, n2 + n + 1) vertices and (n2 + n +
1)(n+1)+1 edges. Then there must be a vertex v ∈ B of degree at least n+2. Consider
the proof of Proposition 3.26. As U2,2(b, v+1, 1, k+2) = n2 +n+n+3+Z2,2(n

2 +n, n2) ≤
n2 + 2n + 3 + (n2 − 1)(n + 1) = (n2 + n)(n + 1) + 2 < (n2 + n + 1)(n + 1) + 1, v must
have degree n + 2. To reach equality, the decomposition in the proof of Proposition 3.20
(with α = 1, β = n+ 2) assures that removing v and its neighbors N(v) = {u0, . . . , un+1}
from G, we find an affine plane of order n, whose points and lines correspond to A \N(v)
and B \ {v}, respectively; moreover, the degree of the vertices of B \ {v} in G is n + 1.
As these vertices have precisely n neighbors in A \ N(v), each one has to be adjacent to
one of the uis. On the other hand, any ui (0 ≤ i ≤ n + 1) may be adjacent only to the
n lines of one parallel class (besides v), hence deg(ui) ≤ n + 1. Let Li ⊂ A \ {v} be
the parallel classes of L (1 ≤ i ≤ n + 1). We may assume that N(ui) \ {v} ⊂ Li for all
1 ≤ i ≤ n + 1. Let H = N(u0) \ {v}; we may assume H ⊂ L1. Then N(ui) = {v} ∪ Li

for all 2 ≤ i ≤ n + 1, and N(u1) = {v} ∪ L1 \ H. Then deg(u0) + deg(u1) = n + 2. ¤

Proposition 3.28. Let c ≥ 1 and n ≥ 2. Then Z2,2(n
2 +n+2+c, n2 +n+1) ≤ (n2 +n+

1)(n+1)+ cn+1. If n ≥ 3, then Z2,2(n
2 +n+2+ c, n2 +n+1) ≤ (n2 +n+1)(n+1)+ cn.
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Proof. Let F be the family of C4-free graphs. The first statement follows from Proposition
3.27 and Theorem 3.15 (with m = n2 + n + 2 and d = n). Now suppose n ≥ 3 and that
equality holds for some c ≥ 1, thus for c = 1 as well. Then any G ∈ ExF(n2 + n +
3, n2 + n + 1) induces a graph from ExF(n2 + n + 2, n2 + n + 1), which has a vertex with
degree at most n/2 + 1 by Proposition 3.27. Deleting this vertex from G we would have
exF(n2 +n+2, n2 +n+1) ≥ (n2 +n+1)(n+1)+n+1−(n/2+1) > (n2 +n+1)(n+1)+1,
a contradiction. ¤

There are ad hoc ideas that may help when determining Zarankiewicz numbers for small
parameters, see Guy [23], p138. The next proposition illustrates such a case.

Proposition 3.29. Z2,2(16, 17) ≤ 70.

Proof. Suppose to the contrary that there exist a C4-free bipartite graph G = (A,B; E),
where |A| = 16, |B| = 17, |E| = 71. As Z2,2(16, 16) = Z2,2(15, 17) = 67, every vertex in
G has degree at least four. Corollary 3.22 yields that there can be no vertex of degree
six. Hence the degree sequence of A and B are {49, 57}, {414, 53}, where the superscripts
denote the multiplicity of that degree. Let v ∈ A, deg(v) = 5, and let N(v) = {u1, . . . , u5}.
Then deg(ui) = 4 for 1 ≤ i ≤ 5, otherwise the pairwise disjoint sets N(ui)\{v} ⊂ A\{v},
1 ≤ i ≤ 5, would have more than 15 elements. Let vi ∈ A a vertex with degree 5,
1 ≤ i ≤ 5. Then |N(v1) ∪ . . . ∪ N(v5)| ≥ 5 + 4 + 3 + 2 + 1 = 15, but there are only 14
vertices of degree four in B. ¤

3.3. Lower bounds for s = t = 2. Now let us collect some constructions regarding the
case s = t = 2. As a general principle, if we have an extremal graph G = (A,B), we can
always delete the lowest degree vertex from A (or B) to obtain a graph on (|A| − 1, |B|)
(or (|A|, |B| − 1)) vertices with many edges. This trivial method gives good results in
many cases. Another simple idea is that if we find k points in A such that no two of
them has a common neighbor, then we can add one vertex to B and connect it with those
vertices. Note that k = 1 always works. Without the sake of completeness, we illustrate
these methods in the upcoming propositions.

Proposition 3.30. Z2,2(14, 25) = 80.

Proof. For basic facts about ovals we refer to [24]. Let O be an oval in PG(2, 5), and
let L0 be the set of its six tangent lines. Let P0 be the set of

(

6

2

)

= 15 outer points of
O together with two arbitrarily chosen points of O. Delete P0 and L0 from PG(2, 5).
The resulting graph clearly has size (14, 25). Any inner point of O is incident with zero
tangent to O, whereas a point of O is incident with precisely one tangent to O. Thus the
number of edges is 4 · 5 + 10 · 6 = 80. On the other hand, R(2, 2, 14, 25, 3) < 81. ¤

Proposition 3.31. Let D be a 2 − (v, k, 1) design, and let ℓD(i) be the least number of
points that the union of i blocks may cover in D. Let fD(c) be the maximal value of i for
which ℓD(i) ≤ c. Then

Z2,2(v − c, b) ≥ (v − c)r + fD(c).

Proof. By definition of fD(c), we can delete c points from D so that fD(c) blocks become
empty. We can connect these blocks with any one of the points without creating a C4, so
we can add altogether fD(c) edges to the (v−c)r edges that remain after the deletion. ¤
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m
n 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
7 21

8 22 24

9 24 26 29

10 25 28 31 34

11 27 30 33 36 39

12 28 32 36 39 42 45

13 30 33 37 40 44 48 52

14 31 35 39 42 45 49 53 56

15 33 36 40 44 47 51 55 58 60

16 34 38 42 46 50 53 57 60 64 67
17 36 39 43 47 51 55 59 63 67 70 74
18 37 41 45 49 53 57 61 65 69 73 77 81
19 39 42 46 51 55 60 64 68 72 76 80 84 88
20 40 44 48 52 57 61 66 70 75 80 84 88 92 96
21 42 45 49 54 59 63 67 72 77 81 86 90 95 100 105

22 43 47 51 55 60 65 69 73 78 83 88 93 97 101 106 110
23 44 48 52 57 62 66 71 75 80 85 90 95 100 105 110 113 116
24 45 50 54 58 63 68 73 78 83 88 93 98 102 107 112 117 120
25 46 51 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125
26 47 53 57 61 66 72 78 81 86 91 96 101 106 111 116 121 126
27 48 54 58 63 68 73 79 83 88 93 98 103 108 113 118 123 128
28 49 56 60 64 69 75 81 85 91 96 101 106 111 116 121 126 131
29 50 57 61 66 71 76 82 88 93 98 103 109 114 120 125 130 135
30 51 58 63 67 72 78 84 90 95 100 105 111 117 122 127 132 138
31 52 59 64 69 74 79 85 91 97 102 107 113 119 125 130 135 140

Table 1. The table contains the best upper bounds on Z2,2(m,n) up to our knowledge. Bold numbers

indicate equality. An exact value is in italic shape if it was not reported by Guy in [23]. In some cases

we did rely on the exact values reported by Guy. Possibly undiscovered inaccuracies there may result in

inaccurate values here as well.

Note that we can dualize the above proposition: if we delete vertices that represent blocks,
we may add an edge to each of the points all of whose neighbors have been removed. Next
we give the exact value of ℓD(i) in some cases.

Remark 3.32. (1) For any 2 − (v, k, 1) design D, ℓD(i) = ik −
(

i
2

)

for 1 ≤ i ≤ 3.

(2) Let D = PG(2, q), i ≤ q + 1. Then ℓD(i) = i(q + 1) −
(

i
2

)

.

(3) Let D = AG(2, q), i ≤ q. Then ℓD(i) = iq −
(

i
2

)

.

Proof. In general, as any two blocks of a 2− (v, k, 1) design intersect in at most one point,
i ≤ k + 1 blocks cover at least k + (k − 1) + . . . + (k − i + 1) = ik −

(

i
2

)

points. This can
be reached if and only if there exist i pairwise intersecting blocks in general position (no
three of them have a common point). As k ≥ 2, one can easily find three such blocks. In
PG(2, q), a dual conic is well-known to be a set of q + 1 lines in general position. One
taken as the line at infinity, we obtain q lines in general position in AG(2, q). ¤

Proposition 3.33. Let q be a square prime power, and let v = q2 +q+1, w = q+
√

q+1.
Suppose that 1 ≤ c ≤ q −√

q, 0 ≤ d ≤ cw, 0 ≤ h ≤ w − 2. Then

(1) Z2,2(v − c(w − 1), v − d) ≥ (v − c(w − 1))(q + 1) + c
√

q − d(q −√
q + 2 − c);

(2) Z2,2(v − c(w − 1) − h, v) ≥ (v − c(w − 1) − h)(q + 1) + c
√

q;
(3) Z2,2(v − cw, v − cw) ≥ (v − cw)(q + 1 − c).
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m n Lower b. Z2,2 Upper b. m n Lower b. Z2,2 Upper b.

8 8 24 d 24 24α=1, β=3 13 13 52 52 52Re

8 9 26 d 26 26α=1, β=4 13 14 53 p 53 53α=1, β=5

8 10 28 d 28 28 g 13 15 54 d 55 55 p

13 16 57 d 57 58Re

9 9 29 d 29 29α=1, β=4 13 17 59 d 59 59 g

9 10 31 d 31 31α=1, β=4 13 18 61Aff 61 61Aff

9 11 33 d 33 33Aff 13 19 64Aff 64 64Re

13 20 66B,d 66 66Re

10 10 34 d 34 34α=1, β=4 13 21 67B 67 68Re

10 11 36 d 36 36Aff 13 22 69 d 69 70Re

10 12 39 d 39 39Re 13 23 71 d 71 72Re

10 13 40 d 40 40α=1, β=4 13 24 73 d 73 73 g

10 14 42 d 42 43Re 13 25 75 d 75 75 g

10 15 44 d 44 44 g

10 16 46 d 46 46Re 14 14 56B 56 56α=1, β=4

10 17 47 d 47 47 g 14 15 58 d 58 58α=1, β=5

14 16 60 d 60 61 g

11 11 39 d 39 39Aff 14 17 63 d 63 63 g

11 12 42 d 42 42Re 14 18 65Aff 65 65Aff

11 13 44 d 44 44Re 14 19 68Aff 68 68 p=3

11 14 45 p,d 45 46Re 14 20 70 d 70 70 p=3

11 15 47 d 47 48Re 14 21 72B 72 72 p=3

11 16 50 d 50 50Re 14 22 73 d 73 74 p=3

11 17 51 d 51 51 g 14 23 75 d 75 76 p=3

11 18 53Aff 53 53Aff 14 24 78 d 78⋆ 78 p=3

11 19 55 d 55 55 g 14 25 80 d 80⋆ 80 p=3

14 26 81 d 81 82 p=3

12 12 45 d 45 45Aff 14 27 83 d 83 84Re

12 13 48 d 48 48Re 14 28 84 d 85 86Re

12 14 49 p,d 49 49α=1, β=5

12 15 51 d 51 52Re 15 15 60 d 60 62α=1, β=5

12 16 53 d 53 54Re 15 16 64 d 64⋆ 64α=−1, β=4

12 17 55 d 55 55 g 15 17 67 d 67⋆ 67 g

12 18 57Aff 57 57Aff 15 18 69Aff 69 69Aff

12 19 60Aff 60 60Re 15 19 72Aff 72 72Aff

12 20 61 d 61 62Re 15 20 75 d 75 75Re

12 21 63 d 63 64Re 15 21 77B 77 77Re

12 22 64 d 65 65 g

12 23 66 d 66 67Re 16 20 80 80 80Re

12 24 68 d 68 68 g

Table 2. The table contains the best lower and upper bounds on Z2,2(m,n) that can be obtained using
the results presented in this paper. The parameters n and m range over the region where the general
results 3.2 and 3.3 do not apply, but Guy published the exact values of Z2,2(m,n) in [23]. The marks
are the following: d: deletion principle (e.g., 3.31); B: 3.33; p: 3.27 and 3.28; Re: [37], [25] and [32];
p=k: Roman’s bound 3.5 (with p = k); g: 3.15; Aff : 3.19; α=x,β=y: 3.20 (if α < 0, then the transposed
version); ⋆: the value is inaccurate in [23]. If more than one bounds give the stated result, we refer to
the historically first one.
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Proof. Let PG(2, q) = (P ,L), and let B1 = (P1,L1), . . . ,Bc = (Pc,Lc) be c pairwise
disjoint Baer subplanes in it. Let P0 = ∪c

i=1Pi, L0 = ∪c
i=1Li.

(1) Define G = (A,B) in the following way. Let A = P\P0∪{B1, . . . ,Bc} (|A| = v−cw+c),
B = L. The edges between A ∩ P and B are those defined by PG(2, q); furthermore,
connect the vertex Bi to all the vertices of Li ⊂ B, 1 ≤ i ≤ c. (That is, we contract the
points of the Baer subplanes.) As any two lines of Li had an intersection in Pi, we do not
create a C4. Note that every Pi is a blocking set, so every line not in L0 looses precisely
c neighbors. Thus the v − cw vertices of A ∩ P have degree q + 1, the c new vertices
have degree w = q +

√
q + 1, thus there are (v − cw + w)(q + 1) + c

√
q edges in G. Let

ℓ ∈ Li ⊂ L0. Then |ℓ ∩ Pj| equals one for all 1 ≤ j ≤ c except for j = i, in which case it
equals

√
q + 1. Hence deg(ℓ) = q + 1 −√

q − (c − 1) in G. There are c(q +
√

q + 1) lines
in L0, so we may delete any d of them to obtain a graph G′ with the stated parameters.

(2) Every point of A∩P has degree q + 1 in G, so we may delete any h of them. It is not
worth deleting more than w − 2 points since we can contract another Baer subplane.

(3) Consider the graph induced by P \ P0 and L \ L0. Here every vertex has degree
q + 1 − c. ¤

3.4. Some remarks and open problems. For small values of m and n, we have com-
puted the best results one can obtain on C4-free graphs using these ideas. These values
can be found in Tables 1 and 2.

Illés and Krarup [26] use the formulation of Zarankiewicz’s problem in terms of integer
programming. They introduce Problem (R), that is, to find

r(n) = max

{

n
∑

j=1

xj :
n

∑

j=1

(

xj

2

)

≤
(

n

2

)

, where xj ≥ 0, xj ∈ Z for all 1 ≤ j ≤ n

}

.

The cost of a solution x = (x1, . . . , xn) is
∑

j

(

xj

2

)

. They call a solution x realizable if

there exists an n × n J2 =

(

1 1
1 1

)

-free 0 − 1 matrix in which the jth column contains

xj ones. In Remark 6, page 129 they claim: “It is conjectured that a necessary condition
for realizability is that the corresponding optimal solution to (R) is a least cost solution.”
Note that the transpose of an optimal n × n J2-free 0 − 1 matrix is also an optimal
matrix of that kind, hence the conjecture claims that the rows also correspond to a least
cost optimal solution. As

(

x
2

)

is convex, the cost of a solution is minimal if and only if
|xi − xj| ≤ 1 for all 1 ≤ i < j ≤ n. In terms of C4-free bipartite graphs of size (n, n), this
is equivalent with saying that if such a graph has the maximum possible number of edges,
then the degrees inside both classes must differ by at most one. This conjecture is false.
Let n = 8. Then Z2,2(8, 8) = 24. Let G = (A,B) be the incidence graph of the Fano
plane, and let a ∈ A and b ∈ B two non-adjacent vertices. Add two new vertices, u and
v to A and B, respectively, and let {u, v}, {a, v}, {u, b} be edges. The resulting graph is
C4-free, has 21 + 3 = 24 edges, and the degrees in both classes take the values 2, 3 and 4.
However, deleting a line l and a point P not on l, together with all the points and lines
incident with l and P from PG(2, 3), we obtain a three-regular bipartite graph on (8, 8)
vertices.
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We say that a vertex class of a bipartite graph is nearly regular, if the degrees in that
class differ by at most one. We end this section by posing some questions that, to the
best of our knowledge, are open. Let 2 ≤ t ≤ n ≤ m be arbitrary integers.

Question 3.34. Does there exist an extremal Kt,t-free graph on (n, n) vertices whose
classes are both nearly regular?

Question 3.35. Does there exist an extremal Kt,t-free graph on (n,m) vertices with at
least one nearly regular class?

Corollary 3.27 shows that extremal C4-free bipartite graphs on (n2 + n + 1, n2 + n + 2)
vertices, n a power of a prime, can not have two nearly regular classes.

Question 3.36 (See [21]). Is it true that Zt,t(n,m) ≤ Zt,t (⌊(n + m)/2⌋, ⌈(n + m)/2⌉)?
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[19] A. Gács, T. Héger, On geometric constructions of (k, g)-graphs. Contributions to Discrete Math-
ematics 3 (2008) 63–80.
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[28] F. Kárteszi, Piani finiti ciclici come risoluzioni di un certo problema di minimo (Italian). Boll. Un.

Mat. Ital. (3) 15 (1960) 522–528.
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